January 8, 1997 Duration: Two Hours

Calculators and mobile phones are not allowed

Answer all of the following questions

- 1. (a) Let $f(x) = \ln(1 + \sqrt{x})$; x > 0. Show that f is one-to-one, and find its inverse f^{-1} .

 State the domain and range of f^{-1} .

 (4 pts)
 - (b) Show that $(\sinh x + \cosh x)^n = \sinh nx + \cosh nx$.

(4 pts)

(4 pts each)

- 2. Evaluate the following integrals:
 - (a) $\int x \sec^{-1} x \, dx$
 - (b) $\int \frac{\cot^5 x}{\sin x} dx$
 - (c) $\int \frac{3x^2 + x + 3}{(2x 1)(x^2 + 4)} dx$
 - (d) $\int \frac{dx}{(x^2 + 4x + 13)^{3/2}}$
- 3. (a) Find the limit $\lim_{x\to 0^+} (e^{2x} 1)^{1/\ln x}$.

(4 pts)

- (b) Determine whether the integral $\int_0^\infty \frac{dx}{e^x + e^{-x}}$ is convergent or divergent. If convergent, find its value.
- (4 pts)

(4 pts)

4. (a) Find the centre, vertices, foci and the equations of the asymptotes of the following hyperbola, then sketch its graph. (5 pts)

$$4x^2 - 25y^2 + 50y + 8x - 121 = 0.$$

- (b) Find the area of the region outside $r = 2(1 + \cos \theta)$ and inside $r = 6\cos \theta$. (5 pts)
- 5. (a) Find the parametric equations of the line of intersection of the planes

$$\pi_1: 3x + 4y + 2z = 4$$
 and $\pi_2: 2x + 3y - z = 1$

(b) Find an equation of the plane passing through the point P(7,0,3) and containing the line (4 pts)

$$\frac{x}{1} = \frac{y-4}{1} = \frac{z-6}{-2}$$